Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic beta-cell differentiation in human embryonic stem cells.

نویسندگان

  • Young Min Cho
  • Jung Mee Lim
  • Dae Hoon Yoo
  • Jae Hyeon Kim
  • Sung Soo Chung
  • Sang Gyu Park
  • Tae Hyuk Kim
  • Sun Kyung Oh
  • Young Min Choi
  • Shin Yong Moon
  • Kyong Soo Park
  • Hong Kyu Lee
چکیده

The major obstacle in cell therapy of diabetes mellitus is the limited source of insulin-producing beta cells. Very recently, it was shown that a five-stage protocol recapitulating in vivo pancreatic organogenesis induced pancreatic beta cells in vitro; however, this protocol is specific to certain cell lines and shows much line-to-line variation in differentiation efficacy. Here, we modified the five-stage protocol for the human embryonic stem cell line SNUhES3 by the addition of betacellulin and nicotinamide. We reproduced in vivo pancreatic islet differentiation by directing the cells through stages that resembled in vivo pancreatic organogenesis. The addition of betacellulin and nicotinamide sustained PDX1 expression and induced beta-cell differentiation. C-peptide-a genuine marker of de novo insulin production-was identified in the differentiated cells, although the insulin mRNA content was very low. Further studies are necessary to develop more efficient and universal protocols for beta-cell differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تمایز بن‌یاخته‌های‌ جنینی‌ انسان‌ به‌ سلولهای‌ مولد انسولین‌

Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated se...

متن کامل

Differentiation of Mesenchymal Stem Cell toward the Insulin-like Cells with Lentivirus Vector Mir-375

Background & Objective: Type1 diabetes is characterized by autoimmune destruction of pancreatic β cells, leading to reduced insulin secretion. Differentiation of mesenchymal stem cells (MSCs) into β-like cells offers new ways of diabetes treatment. MSCs can be insulated from the human umbilical cord tissue and differentiate into insulin-producing cells. Material & Methods: Human um...

متن کامل

Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors

Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...

متن کامل

Differentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell

Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...

متن کامل

PDX1 Binds and Represses Hepatic Genes to Ensure Robust Pancreatic Commitment in Differentiating Human Embryonic Stem Cells

Inactivation of the Pancreatic and Duodenal Homeobox 1 (PDX1) gene causes pancreatic agenesis, which places PDX1 high atop the regulatory network controlling development of this indispensable organ. However, little is known about the identity of PDX1 transcriptional targets. We simulated pancreatic development by differentiating human embryonic stem cells (hESCs) into early pancreatic progenito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 366 1  شماره 

صفحات  -

تاریخ انتشار 2008